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CERN: A UNIQUE ENVIRONMENT

Pushing technologies to their limits

51, CERN
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CE RN “Science for peace”

International organisation close to
Geneva, straddling Swiss-
French border, founded 1954

Facilities for fundamental research
in particle physics

22 member states,
1.1 B CHF budget

3’197 staff, fellows, apprentices,

13’128 associates
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Members: Austria, Belgium, Bulgaria, Czech republic, Denmark
Finland, France, Germany, Greece, Hungary, Israel, Italy,
Netherlands, Norway, Poland, Portugal, Slovak Republic, Spain,
Sweden, Switzerland, United Kingdom

Candidate for membership: Cyprus, Serbia; Slovenia
Associate members: India, Lithuania, Pakistan, Turkey, Ukraine
Observers: EC, Japan, JINR, Russia, UNESCO, United States
of America

Numerous non-member states with collaboration agreements

2’531 staff members, 645 fellows, 21
apprentices

7’000 from member states, 1’800
USA, 900 Russia, 270 Japan, ...
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Standard Model of

FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Model summarizes the current knowledge in Particle Physics. It is the quantum theory that includes the theory of strong interactions (quantum chromodynamics or QCD) and the unified
theory of weak and electromagnetic interactions (electroweak). Gravity is included on this chart because it is one of the fundamental interactions even though not part of the “Standard Model.”
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Spin is the intrinsic angular momentum of particles. Spin is given in units of h, which is the
quantum unit of angular momentum, where h = h/2x = 6.58x1072% GeV s = 1.05x1073% J 5. } the protons Snd NeEtrons K this Picture wers 10 cm scrosey

then the quarks and electrons would be less than 0.1 mm in
size and the entire atom would be about 10 km across.

Electric charges are given in units of the proton’s charge. In Si units the electric charge of
the proton is 1.60x107'2 coulom

The energy unit of particle physics is the electronvolt (eV), the energy gained by one elec-
tron in crossing a potential difference of one volt. Masses are given in GeV/c? (remember
E = mc?), where 1 GeV = 10 eV = 1.60x10-'9 joule. The mass of the proton is 0.938 GeV/c?
= 1.67x10727 kg.
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Matter and Antimatter

For every particle type there is a corresponding antiparticle type, denot-

ed by a bar over the particle symbol (unless + or — charge is shown).

Particle and antiparticle have identical mass and spin but opposite

charges. Some electrically neutral bosons (e.g., Z% v, and m, = ¢, but not
K© = d%) are their own antiparticles.

hadrons

quarks &
Gluons.

Figures hadrons
These diagrams are an artist’s of physical . They are
not exact and have no meaningful scale. Green shaded areas represent
the cloud of gluons or the gluon field, and red lines the quark paths.
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Color Charge
Quarks, Gluons

Gluons
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force carriers
spin
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Color Charge

Each quark carries one of three types of
“strong charge,” also called “color charge.”
These charges have nothing to do with the
colors of visible light. There are eight possible
types of color charge for gluons. Just as electri-
callycharged particles interact by exchanging photons, in strong interactions color-charged par-
ticles interact by exchanging gluons. Leptons, photons, and W and Z bosons have no strong
interactions and hence no color charge.

Quarks Confined in Mesons and Baryons

One cannot isolate quarks and gluons; they are confined in color-neutral particles called

results from multiple exchanges of gluons among the
color-charged constituents. As color-charged particles (quarks and gluons) move apart, the ener-
gy in the color-force field between them increases. This energy eventually is converted into addi-
tional quark-antiquark pairs (see figure below). The quarks and antiquarks then combine into
hadrons; these are the particies seen to emerge. Two types of hadrons have been observed in
nature: mesons g3 and baryons qqq.

Residual Strong Interaction

The strong binding of color-neutral protons and neutrons to form nuclei is due to residual
strong interactions between their color-charged constituents. It is similar to the residual elec-
trical interaction that binds electrically neutral atoms to form molecules. It can also be
viewed as the exchange of mesons between the hadrons.

Residual St
Hadrons
Mesons

Not applicable
to quarks
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The Particle Adventure
Visit the award-winning web feature The Particle Adventure at
http://ParticleAdventure.org
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The Higgs Boson

ScienceNews
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From ridiculously difficult...

WE FOUND 1T/
WE FOUND THE
HIG6S BOSON/

HikingArtist.com

...to almost impossible

=] H
'?;:'_: Coli;gmab Quantum Computing for High Energy Physics Applications 8



Worldwide LHC Computing Grid

Tier-2 sites
(about 160)

Running jobs: 224651
Transfer rate: 4.11 GiB/sec Tier-1 sites

10 Gois inks.

Tier-0 (CERN): Tier-2 (72
*Data recording Federations, ~149
*Initial data reconstruction centres):

eData distribution « Simulation

* End-user analysis

R ¥ : i Tier-1 (14 centres):
% Googlc earth *Permanent storage

L e *Re-processing
— «Analysis *700 PB

Quantum Computing for High Energy Physics App 0

*760,000 cores




HL-LHC: data volume
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History - LEP
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History - conclusions

Moral of the story

« HEP has regularly faced “computer requirement walls” and the
associated scaremongering

» [t reminds me a bit of the Y2K story... if you are old enough to remember it

* We have been very good to “seize the opportunity” and turn emerging
technologies into production facilities

* This has allowed us to survive (indeed very well) at a reasonable cost
» This has also provided a productive dialogue with the ICT community

« One essential element of the success is that we had people already
investigating the field within HEP, i.e. the “seeds” were already there

« The only question (!) is what will be the next “savior(s)”

] H
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uantum Computing?

"Nature is quantum, goddamn it! So if
we want to simulate it, we need a
guantum computer.”

R.Feynman, 1981, Endicott House, MIT

Use qubits instead of bits...
e.g. bits that exhibit quantum
behavior

Gl

2]
Physics of Computation Conference Endicott House MIT May 6- ﬁ
1)

13 Fredenck Kantor

‘Bloch’s sphere

35 Manuan P
3 Da
%
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Quantum Computing in
perspective

10 10,000

The three frontiers
Short distance -> High Energy Physics
Long distance -> Cosmology
Entanglement (i.e. complexity) ->

Quantum Information Technology
Since Turing it was believed that
the “hardness” of a problem ..

T T T T T
1970 1980 1990 2000 2010 2020 2030

- 1,000

wu

0.1 - 100

Micron

~0.7% every
2 years

0.01 1

Size of an atom

was intrinsic to it
Quantu m Com pUtl ng iS now We could argue that Quantum Computing
Chal |eng | ng th iS is a natural consequence of Moore’s law
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== and money is flowing in...

EU Quantum Flagship — large-scale
initiative Gartner Hype Cycle

funded at the 1b € level on a 10 years timescale.

US-DoE Quantum Information
Science Enabled Discovery
(QuantISED) for High Energy
Physics
Up to $13M total of awards in FY 2018 (FOA+LAB)
US-DoE Quantum Information  what /
Science in FY 2019 HEP people

AVISIBILITY

Peak of Inflated Expectations

Plateau of Productivity
A

gnment

Slope of Enlight

of Disillusionment

. , laugh about : TIME
President’s Budget Request: $27.5M What matters gy 9y Trigger 4 >
. at the end
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Just for the skeptical

| think there can be a world market for maybe five computers.
(Thomas Watson, CEO of IBM, 1943)

There is no reason for an individual to have a computer at home .
(Ken Olsen , president, director and founder of Digital
Equipment Corp., 1977)

| think that this thing that Tim (Berners-Lee) has shown me has
no future (F.Carminati, 1989)

Ty Co%qgmab Quantum Computing for High Energy Physics Applications 17
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Research paths in QC

» Get access to emulators and simulators to start assessing development
tools and methodology, develop proof-of-concept algorithms for HEP
workloads

» Get access to real devices, benchmark, compare results

 Investigate and collaborate in the development of APIs and user
interfaces to access QC systems

 Discuss collaboration on engineering aspects of QC installation, primarily
cryogenics and material science

» Understand the role that CERN can play as part of broader QC
development initiatives

] H
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The “seeds” are already there

Most of what we do is optimisation / fitting / minimisation (superpolynomial speedup!)
https://www.nature.com/news/quantum-machine-goes-in-search-of-the-higgs-boson-1.22860

Training of Deep Learning is revealing a bottleneck, Quantum Computing can help
https://www.datasciencecentral.com/profiles/blogs/quantum-computing-deep-learning-and-artificial-intelligence

Combinatorial searches can be speeded up
e.g. track reconstruction

We can simulate basic interactions with QC
https://www.nature.com/news/quantum-computer-makes-first-high-energy-physics-simulation-1.20136
https://mappingignorance.org/2017/01/27/simulating-particle-physics-quantum-computer/

Lattice QCD calculations
https://mappingignorance.org/2017/01/27/simulating-particle-physics-quantum-computer/

Very fast random number generators can be built
https://www.osapublishing.org/viewmedia.cfm?r=1&uri=ICQI-2007-JWC49&seq=0

Quantum Detectors combined with Quantum Computing for online

=] H
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Quantum Computing for Theoretical Particle Physics

Quantum on Quantum

QC can be used to solve directly Quantum Many Body and Quantum
Field Theory problems

* In chemistry we already have variational calculations of atomic orbital
configurations
= Complex molecules are the “killing app” here

« Similarly for Nuclear Physics the e
challenge will be to describe nuclei '_ Computing | /
and their scattering and interactions ’ '

* This is well beyond exascale computing
and current theoretical understanding

=] H
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Two approaches to QoQ

Analog quantum simulations

Use interactions between quantum elements to simulate the
continuous-time evolution governed by a given Hamiltonian.

Same equations - same physics

Direct implementation of Schrodinger’s equation.

Usually special purpose systems

-

= ~ .0 iy 5 s \
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Analog Quantum Simulation

One important example

Ultracold atoms in optical lattices to describe
many-body physics & high-temperature
superconductivity

Hart et al., Nature 519:211 2015

e Study of quantum phase transitions

* Quantum magnetism

* High-temperature superconductors

* Quantum Hall effect

e Address problems in quantum filed theory

=] H
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Two approaches to QoQ

Digital Quantum Simulation

* Digital Quantum Simulation which can solve the Schrodinger
equation using a discretized approximation of the time-
evolution operator.

» Use efficient methods for constructing the system Hamiltonian
and then decompose the time-evolution operator into a
sequence of well-defined instructions

* These instructions are applied to the register in order to carry
out a specific simulation sequence

« All this in a “generic” quantum computer

] H
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Recalling a bit of notation

- :

time
quantum many qubits

quit circuit /

=] H
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Recall - the Hadamard gate

1
10) —— H [— ﬁ(|0)+|1))

_ 1 1[0y
i(lo) — 1) = \/5(1 _1) ((1|l/))>
V2

=] H
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Recall - C-not gate

- Remember the c-not gate?  [10007 [(00|y)]
0100| [(01[y)
0001| |(10[w)

A I ¢ 0010] | (11]y).

PO ENENENEN

0 1 0 1
1 0 1 1
1 1 1 0
‘- = openlab Quantum Computing for High Energy Physics Applications 27



Producing entangled states

I
l
|1} = H [t
| — (l01) - 10)
! V2
1) ! D
: %
l
i (10 — |1)[1) A c-not gate is a unitary operator
V2 just like the time evolution operator
_H®
U p) =e " [)
‘::l' Coli?gnlab Quantum Computing for High Energy Physics Applications 28



Controlied Unitary
Evolution

If |) is an eigenstate of U

10 0 0 7
01 0 O
00U;11U55

100U21U;;.

I I
! |
|0) H I I I V2
| |
| |
) ## [ I — ¥
. ! U@Np) = e™ [§) I
1 ! 1 I —lwt
10+ 1)IY) 7 (101 + e 11) 1))

Eigenstate does not change but the control bit oscillates!

“1,= openlab Quantum Computing for High Energy Physics Applications
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How to measure the phase?
1
7z

...but we still need U(t)...

(IO)+e‘i“’t|1)) —— H —— e 2(cos(wt/2)|0) + sin(wt/2)|1))

...and voila, the phase is an amplitude...

|0) —— H o

|0) = H ﬁ QFT! — }Digits of the energy
|0) =—— H 1 —

) 74 U U Ay 1Y)

n

Courtesy of Peter Love, Department of Physics, Tufts University
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Getting serious about it

Simulating QCD processes

* For high-energy processes in small volumes of space- time, QCD can
be solved by expansions

« Conversely, the only technique for solving QCD in the intermediate
regime is Lattice QCD (LQCD), in which space-time is discretized on
a grid and the theory is solved numerically

« But these calculations are affected by the “sign problem”
= Which also affect the weights of path integral solutions!

* Real-time evolution of strongly interacting quarks and gluons cannot
be determined with current computers and algorithms

» Fragmentation, QGP, matter in extreme conditions and the origin of the universe, star
structures, supernovae

] H
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Simulating QCD

« Quantum computer can naturally manipulate complex
amplitudes and thus does not suffer from sign or complex
weight problems

* New approaches such as the Tensor Networks representation
of the wave function in LGT and Quantum Link Model
formulation of LGT are particularly suited for Quantum
Computers

] H
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One example

« Dashed line is single meson moving through the
lattice

» Colored lines are cuts of the entanglement
entropy at different times

* Asinglet state has been created between the
two indistinguishable mesons

« The entropy has increased by one ebit because
the information of the fate of the two mesons

(bouncing back or continue traveling) is lost due 5 100 150 200 o 15 3
to the superposition state T 5@
Entanglement entropy in the scattering of two
» This kind of calculations are particularly suited mesons in the Schwinger model calculated
for digital or analog quantum computers using tensor networks.
T Pichler, et al. Phys. Rev. X., vol. 6, p. 011023,
‘::l' Coli;gnlab Quantunzgr;]pt@ng for High Energy Physics Applications 33



QC and Higgs Analysis

Mott A et al. Nature 2017, 550:175

* Problem: distinguish signal from background

(BACKGROUND )

et o || -

B ——\ NN ]

AA%

............ 7 %*V\/\/\ >m_

Generated with PYTHIA 6.4 Generated with SHERPA at 8TeV
; ' proton-proton c.0.m energy
i o Fhon > Photon pT of 32 GeV and 25 GeV
o for realistic trigger selection
> Di-photon mass [122.5, 127.5] GeV
» Higgs candidate |n|<2.5

s 55 %
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Take 1 - Quantum Annealing

D:\Wavulk

The Quantum Computing Company

Ll 5d v -
‘L‘T'_I 3 I{\j

=

' i “; {

Q—L‘l—/ P l L‘I_l @mm‘mw
uantum Circuit - |

) ‘ 1098 qubits

Operates @ 15mK

Anneals in 5-20us

Quantum Annealer
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||
Take 1 - Quantum Annealing
How does it work
) E /\ﬁawn Adiabatic
Slow M strategy

 Setup with trivial H, and evolve to .

. I
target H, in the ground state E ‘
- -— Optimal
H(t) = A(t)Hy + B(t)H, -
t
Setup Hamiltonian: H(0) Problem Hamiltonian: H,

100%
90% |
80%

Uniform superposition of State minimizing the energy
possible qubit states of the problem

T.Caneva et al. PRA (2014)

70% - Hamiltonian Z Sd:gbat]ic ;
60% - 5 -- Optima
50% 5 = linear ks
40% =
bl .% 3rd
20% £
10% - ﬁ
0% =0 ‘ - = . . . . - - ’ ' '% 2nd
- T=tfina| =]
% Ist
https://arxiv.org/abs/quant-ph/0001106 &
https://arxiv.org/abs/quant-ph/0104129 - GS
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D-Wave qubit connectivity

Ising Hamiltonian

AP AT AP AP

, 7 7 ol JlL 7l

. — . (T . O0%0: o/ s | [ e | /| ke

Hising hioi + ) Jijo; 0; (ETEV TV Y
] e ellesglling

é
LA
<

o5
e

=
-..:I

(.

>

.

QT

/) '»,
JR | (| (| (e |

I‘l , 1 .’ﬁf. i, .‘i{. l.:.;,\) '., /

\ ~"|' I l({\‘ih L\) | 4
; Nt N A\

(e .1|IF ’M a Y, i n R

e | 1| X

External Field

Interactions
Not fully connected

But what if we do not have all connections?
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D-Wave Chimera network

. P )
T e 0
59

®
®
e <0 ;
@ o * Realize full Ising via spin chains by the
a5 Chimera graph

e o

% 1es * Split local fields across all qubits in the chain
Gio oo e o 0 e Tightly intra-chain coupling (J; up to 6)
@ & &% @@ . Non-unique, heuristic embedding
® e (e e (@ o * Post-process to correct broken chains
e.® f/e @8 |« Majority vote
.: ": _tl.:ff’: '« Approximately 40 spins full Ising Model

https://arxiv.org/abs/1210.8395
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Now let’s do this...!

105 A1 10° 10°
F\
104 [ 10 L, 10* 104
\L* i 4
103 Y 10° 10° \\ 10°
102 102 ‘\“\ 10?2 L\.\u 102
vy -
101 101 Ljﬁw,_ 101 k’lﬂJk M 101 w\m ‘L g
A ﬂ Lh|
10° 10° h :W\M 10° WM d s 10° ’jj j | b oom
0 1 2 2 4 6 8 2 3 4
p2im,y (p} + p)imyy (pt = pPImy,
5 o 4
104 10 1 ‘\\\ 19 _/’lﬂh\\
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104 | 10° \\\ 10° \\
103
i 103 %, \L \
v o \\ ].02 102 \‘q
10?2 ! 2 N |
' 10 " 3 Iy
101] P 100 T;f\vm ] 10! 10! AL-I
J . I,
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10° 10° ‘LRJHL‘LB 10° 10° ﬂ’J“
1 2 4 6 1 2 3 4 6 8
pyim,y An Nyy
o T T
el ] 1 signal —— —— background
o S O VR I
ERN . . . . .
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|||||||||||||||||||

Weak — Strong classifier’ . —

0.0

How to obtain a strong classifier : 1 m

0.02

.......................

....................

hI(X) E ['1,1] are functlons .EOriginaI : ] "1 Weak CIassifierA

of the variables such that
P(S|h>0) > P(B|h>0)
P(B|h;<0) > P(S|h;<0)

l.e.

h,>0 probably Signal
000 = ) wihy(x)

* h;<0 probably Background
‘::l‘ CoESSmab Quantum Computing for High Energy Physics Applications 40



The gory details...

« Since we have a MC, we can define a precise target

| +Lifx€eS
y(x) = {—1,ifx €EB
« So the error per event is

N
Fe = B(r) = () = ) wihi(x;)
 And the total error is )

S(x) — Z E2 |yS|2 + z Cl]WlW] 2 Z Cylwl Cl] = zh (xs)h (xs) Cy] - Zh (xs)ys

i,j=1

» §'(x) = z Ciwiw; + ZZ(A C,i)w, + sparsity penalty (A, Hamming weight)

— constant (|y|?)

,j=1
=% CERN -
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So here we are!
N N
SI(X) = Z 2(). — Cyi)Wi + Z Cl]WlW] » HIsing =
=1

i,j=1
ROC
1.0+ 0.66
_ DW&SA DNN & &
il . C 0.64
0.8 * Classical ML =
o <
Q O 0.62
$o.6 )
. - ‘ «
v [Trainingon DW & SA = 0.60
c /N
y . o
£ g q20K events ¢ * D-Wave annealing £
< / 0.58
e} ©
= DNN & 2
0.2 <0.56
080 02 02 o6 o8 \fo 054
: . ; ) : . o Qo Q Q Q Q
Signal Efficiency '\? QQ QQ QQ QQ QQ
¥ R S T
s Training size
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For reference

« XGBoost (XGB)

= Extremely efficient library for training decision trees (http://xgboost.readthedocs.io)

= Discovered during the higgs-ml challenge (https://www.kaggle.com/c/higgs-boson)

= Moderately optimize the hyper-parameters

* Deep Neural Network (DNN)

= Simple fully connected model 2 layers 1000 nodes
= https://keras.io/ http://deeplearning.net/software/theano/

= Moderately optimize the hyper-parameters

] H
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Take 2 - Quantum Circuits

The IBM Q-machine

Support Vectors

« Same problem — different take
» Analysis done with Support Vector Machine
« Separate two sets of points with the widest possible margit

« The decision function is fully specified by a (usually very
small) subset of training samples, the support vectors.

» The solution is fully specified by a (usually small) subset of
training samples, the support vectors.

« If there is an hyperplane that divides the points itis a
simple quadratic optimization

Maximize margin
Support Vectors: vectors that “support” the dividing planes
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Almosta DNN

* Input: set of training pair samples with a result function y(x;) €
[—1,1];

« Output: set of w; whose linear combination predicts the value of
y(x;)

 Important difference: optimization has two objectives: maximize
the margin (“street width”) and reduce the number of weights to
the (usually few) support vectors

] H
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One word on how SVM works

- Distance from support point to centerline  H wx+b=+1
d=|wx+bl/[W]|=1/Iw]

« We have to minimize |w’| and
impose no points “in between” H,
yiwx; +b) =1

» Well defined quadratic minimization
problem with linear constraint solved
with Lagrangian multipliers

¢ O
1/2|W’|+Zai(yi(W’fi+b)—1) et

l

min £L(X,d) = min
w,b w,b

=% CERN
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This is great but...

 What about this?

o yi = X +f
® o
T g 4
"HK ) » 00 O
®| O
>
» With the bonus of the Kernel Trick
We do not need x’ = ®(x) but just K(x;,%;) = ®(x7) - @(x;)!
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Now on Quantum

« Step O: Build a classifier like before

« Step 1: Feature-map the data to a much larger dimensional
space

« Step 2: Train a the weights
« Step 3: Apply Quantum Classification

] H
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Step 1

» Feature-map to a high-dimensional space (with entanglement)
Us) = Uo@HP Vg H®"

2T
[(+1]
e | ,.af- 1] > H H [ 1 o~ [
V4 i ‘/,f:f oy :Dle'l brel . :Pe'l
| 0 H H B N B
Single qubit mappinT with H H B B B
1 o0
phase gate Us(x) = |, eix] Uy = exp ii z . (%) HZ‘)
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Step 2a

» Define the training network as a short-depth quantum circuit
made of layers of single-qubit unitaries and entangling gates

-----
-

g B o K O o B 1T
16, —- o 0 _._ - - B -~ .F
_93,1'5' bg _93“ : ; :%d_’i_:_'ﬂf(ﬂ)_ e 5 —
{aH = Hal--HE 4+ DL
_951"‘ —gst ‘E .595|’§'_ ] — —_— -
t=1...1
(l) (2) (1)
W(Q) loc(gl)Uent loc (Qz)Uent Uloc (01)
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Step 2b

- Apply a binary measurement {M, } to get the classifier and
measure the probability of the foreseen outcome

0} — A=z )
0} — ~ A= 22
Ty
0} — :a:ea Wil HA== ) flz)ec
10; — A Zn—1
|D} - A “n ]
py (%) = <c1>(£) WT(é)MyW(é)‘CD(f)>
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Step 3

* Train the network

* Obtain the empirical distribution p,,
* Assign label m(X) =y iff py(X) > p_y (X) —yb

* Use coSt Ropmp = = X s Pr(fi(X) = m(X)) on training set

1
T

« Optimize for (5, b)

] H
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Apply to data - simulator

et
accuracy

0.775 0.798 0.774

0.810 0.796 0.781
aucC

0.849 0.834 0.826

0.880 0.867 0.869
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Apply to data -- simulator

1.0

Background rejection

ROC Curve for 200 events

e
o

~== gsvm
=== bdt

0.4 0.6 0.8
Signal efficiency

0.2

10

ROC = Receiver Operating Characteristic

.. CERN

- openlab

Quantum Computing for High Energy Physic

Background rejection

ROC Curve for 800 events

10 R T -
2 .M---o
- e
S 0.8 - e,
€ Ly
R N
V' 0.6 , ‘.\
)
° <1
5 i
e 0.4 \I %
o VA
=t .3
® 02 A
= === gsvm \L i
=== bdt X
0.0 : . . .
0.0 0.2 0.4 0.6 0.8 10
Signal efficiency
- ROC Curve for 3200 events
_---___~--:’.'::::::::\ ~== gsvm
S === bdt
0.8 \‘::,‘
ALY
\\\~\
‘\ ‘\
0.6 \ N
) -,
1 AY
A 1
\ 1
TR
0.4 L
\ 1
.
[
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Apply to data -- hardware

QSVM accuracy with different
T number of iterations

« Accuracy and AUC with different number of A P

°
]

iterations. e
' TR : e sV T
« QSVM accuracy increases with iterations L

°
o

« QSVM AUC increases rapidly with iterations N

QSVM auc with different

« We plan to run the test with many more " number of iterations
iterations if possible °*| "BDT -
2o govm

10 30 50
=¥ CERN Number of iterations
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Other examples - 1

DUNE experiment

 Origin of Matter T

acility

Res

e Unification of forces
* Black hole formation

« Supervised Quantum Learning to
reconstruct neutrino interactions
with a Quantum Computer

« Unsupervised learning to
analyze the simulated and real
event structures

=] H
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Other examples - 2

Optimize Grid workflow

Map  Satellite

* ALICE Grid

= 70 computing centres in 40 countries
= 150,000 CPU cores and 120 PB of storage
= ~140.000 jobs running 24 x 7 x 365

Running Jobs

.
A

.j % . n A |
Y -JJMM'!’ #c';j J'.'—\/J “‘P\u *--a"\.n,.,(‘m ‘_f\\"’.f R’WJ’W

\"‘7‘ | |

\ workflow

« Use Quantum Computing
i algorithms to find best distribution
R L e L e A e in a dynamic environment

DCSC_KU —+-FZK -+ FZK ARC + Grenoble -+ GRIF_IPNO_HTC -+ GRIF_IRFU -« GRIF_IRFU_ARC + GS| = HIP - Hiroshima -s- HPCS -a-IHEP --IPNL -=-ISS
+-I1SS_LCG - [TEP —-JINR - KFKI -»- KISTI_GSDC Kolkata-CREAM Kosice LBL -»-Legnaro -+ LUNARC NIHAM = NIKHEF -+ NIPNE ORNL -+ Oxford
+ PNPI -+Poznan « Prague --Prague_ARC + RAL -+ RAL ARC -+ Regulus -=-RRCK) + RRC_KTL - SaoPaulo - SARA - SARFTI + SPbSU -+ SPbSU-CC
+ Strasbourg_IRES - Subatech = Subatech_C7 - Subatech_CCIPL - SUT —Torino - Trieste -+-TriGrid_Catania -»-Troitsk --UIB = UIO -s- UNAM
- UNAM_T1 -+ UPB -+~ Wuhan -s-WUT + ZA_CHPC

\
=00 : | - : :
g= | « Optimize storage location and job

SARRREEERRRERNE
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Other examples -

Track reconstruction in dense environments

* Track candidates are identified via
combinatorial search

* And then “followed” via Kalmnan filters
* The track is no better than its seeds!

Multi-step iterative Kalman filter approach -
Transition o ..... ~

== RN I—
..... ° ~\\ \ Seedfinding -
- = e : * Use Quantum Computing to
N\ Tackfinding speed up combinatorial searches

* And Genetic Algorithms to quickly

e,

1‘-»."93
- optimize the search
:\t)tienr‘acllon
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Quantum Computing Initiatives 7

« CERN openlab has organized a kick-off event of its Quant _.. ..
Computing initiative on November 5th-6t"
= https://indico.cern.ch/event/719844/

« > 400 registered participants from the HEP physics community,
companies and worldwide research laboratories and beyond

» Create a database of QC projects to foster collaborations
between interested user groups, CERN openlab and industry

« Continue to seek funding opportunities for QC projects
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https://indico.cern.ch/event/719844/

CONCLUSIONS

Conclusions

CERN openlab is a unique public — private infrastructure fostering
collaboration between research and ICT industry

We have presented two specific fields of investigation that have a high
relevance both for fundamental research and for society at large

Deep Learning has emerged in recent years as a very interesting _
discipline that has already proved its worth in many fields, but that is
still an active domain of research and investigation

While still not a ready for prime-time production, Quantum Computing
holds the promise to herald a revolution in ICT

CERN openlab intends to investigate the opportunities offered by these
and other advanced ICT fields, fostering collaborations between
scientists and industry
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Thanks for your attention!

federico.carminati@cern.ch
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